Analysing Lexical Semantic Change with Contextualised Word Representations

Mario Giulianelli, Marco Del Tredici, Raquel Fernández

Institute for Logic, Language and Computation
University of Amsterdam
Number of usage types is lexeme-specific and induced from language use.

Usage vectors are characterised by contexts of occurrence – not by lists of nearest neighbouring words.

<s> ... highlighter ... </s>
Method

For each word of interest \(w \)

1. **extract** contextualised representations for all occurrences of \(w \) in the corpus, using a language model (e.g., BERT or ELMo)

2. **cluster** all representations of \(w \) into usage types by automatically selecting the optimal number of clusters (e.g. K-Means + silhouette score or Affinity Propagation)

3. **organise** usage clusters into diachronic usage distributions (frequency-based or probability-based)

4. **quantify** degree of change by comparing representations and usage distributions

PCA visualisation of all contextualised representations for the word users as it occurs in COHA (Davies, 2012)
Method

For each word of interest w

1. **extract** contextualised representations for all occurrences of w in the corpus, using a language model (e.g., BERT or ELMo)

2. **cluster** all representations of w into usage types by automatically selecting the optimal number of clusters (e.g. K-Means + silhouette score or Affinity Propagation)

3. **organise** usage clusters into diachronic usage distributions (frequency-based or probability-based)

4. **quantify** degree of change by comparing representations and usage distributions

Contextualised representations (left) and usage type distributions (right) for the word *users* as it occurs in COHA (Davies, 2012)
Method

For each word of interest \(w \)

1. **extract** contextualised representations for all occurrences of \(w \) in the corpus, using a language model (e.g., BERT or ELMo)

2. **cluster** all representations of \(w \) into usage types by automatically selecting the optimal number of clusters (e.g. K-Means + silhouette score or Affinity Propagation)

3. **organise** usage clusters into diachronic usage distributions (frequency-based or probability-based)

4. **quantify** degree of change by comparing representations and usage distributions

\[4 \]

- **Jensen-Shannon Divergence**
- **Entropy Difference**
- **Average Pairwise Distance**

between two time periods

or

average over pairs of time periods
Are the resulting usage clusters interpretable?

- literal vs metaphorical
 - ‘the ceiling of a church’
 - ‘prefer the open sky to a ceiling’
 - ‘ceiling prices’
 - ‘breaking through the ceiling’
- polysemy and homonymy
 - ‘full of questions, intensely curious’
 - ‘half fearful, half curious’
 - ‘the most curious reading’
 - ‘a curious sense of gratitude’
- entity names
 - ‘wireless device’
 - ‘wireless network’
 - ‘wirelessly’
 - ‘wirelessly’
 - ‘verizon wireless theater’
- syntactic functionality
 - ‘the refuse of the schools’
 - ‘refuse to hire’
 - ‘refuse or neglect to perform’
 - ‘refuse a draft’
 - ‘refuse, and you die’
- affixation
What types of lexical change are detected?

broadening (incl. metaphorisation): “curtain”

- I hung colored lights around my curtainless windows
- inflatable curtain-type head-protection bags
- raising the curtain on its [...] tax-reform program
- bureaucracies [...] on both sides of the curtain

narrowing: “tenure”

- employment and tenure // minority faculty in tenure
- tenure of office
- tenure-track faculty position
- reasons for short term leases and insecurity of tenure

shift: “coach”

- you can always go coach // stage coach
- cinderella - here comes your coach

new syntactic role: “download”

- to download
- a download

COHA (Davies, 2012) COCA (Davies, 2010)
Correlation with human judgements

Diachronic Usage Pair Similarity
A crowdsourced dataset of similarity judgements for more than 3K English word usage pairs (16 lemmas) from different time periods.

Data: GEMS (Gulordava & Baroni, 2011)
100 words w/ shift scores.

Shift score: average human judgement on a word’s meaning change between 1960 and 2000 (on a 4-points scale).

Metric: Spearman rank correlation between annotated change score and our three measures of change.

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>German</th>
<th>Latin</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency difference</td>
<td>0.068</td>
<td>0.278</td>
<td>0.276</td>
<td>0.285</td>
</tr>
<tr>
<td>Entropy difference (max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jensen-Shannon divergence (max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pairwise distance (Euclidean, max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gulordava and Baroni (2011)
Frermann and Lapata (2016)

How similar are the two occurrences of [[federal]]?

Significant rank correlation between averaged human similarity judgements and BERT similarity scores for 10 out of 16 words.
References

